\qquad

I. Fill in the blanks

\qquad properties can be observed without chemically changing matter.
\qquad properties describe how a substance interacts with other
substances. \qquad have definite shapes and definite volumes. have indefinite shapes and definite volumes. \qquad have indefinite shapes and indefinite volumes.

Phase changes are \qquad changes. \qquad point is the temperature at which a liquid turns to a solid. It is also equal to the
\qquad point which is the temperature at which a \qquad turns
to a \qquad . \qquad point is the temperature at which a liquid turns to a gas, and \qquad point is the temperature at which a gas turns to a liquid. Occasionally, a solid turns directly into a gas without turning into a liquid first. This is called \qquad .

A(n) \qquad is a pure substance that is made of only one kind of atom.
The symbol for $a(n)$ \qquad is always one or two letters. When the symbol contains two letters, the first letter is always \qquad , and the second letter is always \qquad -.
$A(n)$ \qquad is a pure substance containing two or more elements that are
\qquad combined. $A(n)$ \qquad is represented by a chemical
\qquad . The elements in $a(n)$ \qquad always combine in proportions.

A(n) \qquad is made of two or more substances that are \qquad
combined. $A(n)$ \qquad that is uniformly mixed is called \qquad . A special name for this is a(n) \qquad A(n) \qquad that is not uniformly mixed is called \qquad . A special type of mixture that is a solid
\qquad of two or more metals is called $a(n)$ \qquad .

The property used to separate a mixture of sand and iron filings is
\qquad . The technique used to separate liquids based on boiling points is called \qquad . The spinning machine used to separate mixtures based on densities is a \qquad .

Density describes the relationship between the \qquad and ___ of a sample of a substance. The most common units for density are
\qquad and \qquad . The density of water is \qquad _.
II. Classify each of the following properties/changes as chemical (C) or physical (P).

combustibility		getting a haircut
flammability		tendency to corrode
weight		crushing rocks
tearing paper		boiling point
ductility		odor
texture		malleability
digestion of food		fire works exploding
density		lighting a candle
evaporation		tarnishing silver
ice cube melting		formation of acid rain
volume		dissolving salt in water

III. Classify each of the following as an element (E), compound (C), homogeneous mixture/solution (S), or heterogeneous mixture (HE).

IV. Show all work as you complete the following problems.

Given a mass of 24 grams and a volume of 3 milliliters, calculate the density.

What is the mass of 32 milliliters of water?

Given that the density of iron is 7.9 grams per centimeters cubed, what would be the volume of a 3.5 gram piece of iron?

Find the density of a block with a length of 5.0 centimeters, a width of 2.0 centimeters, a height of 1.0 centimeter, and a mass of 45 grams.

Find the density of an 8-gram rock if the water in a graduated cylinder rises from 25.0 milliliters to 29.0 milliliters when the rock is placed into the graduated cylinder.

You have a piece of silver with a mass of 42.8 grams. Silver has a density of 10.5 grams per centimeter cubed. What would be the new level of water if this piece of silver were placed into 25.0 milliliters of water?

The density of iron is $7.0 \mathrm{~g} / \mathrm{cm}^{3}$. What volume of iron would have a mass of 14.0 g ?

